Gabriel Muñoz
Consultor en Datos Biodiversidad y Geoespaciales
Coordinador General
Errores de tipeo
Discrepancias
Fueras de lugar
Errores de formato
Irregularidades
Datos faltantes
Contradicciones
Duplicaciones
Fueras de rango
Incongruencias
Como exportar hojas de cálculo?
Registros similares en un dataset
Seguir standards internacionales en unidades y formatos (e.g. yyyy-mm-dd)
Se consistente (e.g. Mts, (m), metros)
Preserva en formatos estables (.csv, .txt, .tsv)
R version 3.4.4 (Someone to Lean On)
RStudio Desktop 1.1.442
Software gratis y abierto para el computación estadÃstica y graficos.
Lenguaje de programación
Un proyecto, una carpeta!
Estandarización
datosMediaLab
datosMediaLab_feb
Indentación
Simple
# Numericos
num = c(2,4,5,6,7,5)
num
## [1] 2 4 5 6 7 5
# Logicos
tOf = c(TRUE, FALSE, T,T, F)
tOf
## [1] TRUE FALSE TRUE TRUE FALSE
# texto (strings)
text = c("a","b","c","d")
text
## [1] "a" "b" "c" "d"
# Examinar:
length(text)
## [1] 4
# Combinar
comb = c(num ,tOf, text)
comb # Numeros a texto
## [1] "2" "4" "5" "6" "7" "5" "TRUE" "FALSE"
## [9] "TRUE" "TRUE" "FALSE" "a" "b" "c" "d"
# "<-" asigna un valor a la variable
x <- 3
# "=" tambien asigna un valor a la variable
y = 4
# Operaciones aritmeticas
z = x + y
z
## [1] 7
w = ((x^2) + (y^2))/z
w
## [1] 3.571429
text
## [1] "a" "b" "c" "d"
text[3]
## [1] "c"
text[-3]
## [1] "a" "b" "d"
text[c(1,3)]
## [1] "a" "c"
text[c(4,3,2,1)]
## [1] "d" "c" "b" "a"
text[c(1:3)]
## [1] "a" "b" "c"
tOf
## [1] TRUE FALSE TRUE TRUE FALSE
text[tOf]
## [1] "a" "c" "d"
nombres = c("Michelle", "Diana", "Gabriel", "Horacio","Pablo")
names(num)
## NULL
names(num) = nombres
num
## Michelle Diana Gabriel Horacio Pablo <NA>
## 2 4 5 6 7 5
names(num) = c(nombres,"Sara")
num
## Michelle Diana Gabriel Horacio Pablo Sara
## 2 4 5 6 7 5
num["Diana"]
## Diana
## 4
num[c("Diana","Gabriel")]
## Diana Gabriel
## 4 5
matrix1 = matrix(c(1,2,3,4, 5,6,7,8), nrow = 2,ncol = 4)
matrix1
## [,1] [,2] [,3] [,4]
## [1,] 1 3 5 7
## [2,] 2 4 6 8
str(matrix1)
## num [1:2, 1:4] 1 2 3 4 5 6 7 8
matrix2 = matrix(c(11,12,13,14,15,16,17,18), 2 , 4)
matrix2
## [,1] [,2] [,3] [,4]
## [1,] 11 13 15 17
## [2,] 12 14 16 18
# por columna
cbind(matrix1, matrix2)
## [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8]
## [1,] 1 3 5 7 11 13 15 17
## [2,] 2 4 6 8 12 14 16 18
#por fila
rbind(matrix1, matrix2)
## [,1] [,2] [,3] [,4]
## [1,] 1 3 5 7
## [2,] 2 4 6 8
## [3,] 11 13 15 17
## [4,] 12 14 16 18
lista = list(text, num, tOf)
lista
## [[1]]
## [1] "a" "b" "c" "d"
##
## [[2]]
## Michelle Diana Gabriel Horacio Pablo Sara
## 2 4 5 6 7 5
##
## [[3]]
## [1] TRUE FALSE TRUE TRUE FALSE
lista[[2]]
## Michelle Diana Gabriel Horacio Pablo Sara
## 2 4 5 6 7 5
lista[[2]][3]
## Gabriel
## 5
lista[[2]][3] = 4
lista[[2]]
## Michelle Diana Gabriel Horacio Pablo Sara
## 2 4 4 6 7 5
lista = list("letras" = text, "numeros"= num, "opLogicos" = tOf)
lista
## $letras
## [1] "a" "b" "c" "d"
##
## $numeros
## Michelle Diana Gabriel Horacio Pablo Sara
## 2 4 5 6 7 5
##
## $opLogicos
## [1] TRUE FALSE TRUE TRUE FALSE
lista$letras
## [1] "a" "b" "c" "d"
lista$letras[2]
## [1] "b"
lista[c("numeros", "opLogicos")]
## $numeros
## Michelle Diana Gabriel Horacio Pablo Sara
## 2 4 5 6 7 5
##
## $opLogicos
## [1] TRUE FALSE TRUE TRUE FALSE
# Lista de vectores del mismo tamaño
data.frame(text, num, tOf)
## Error in data.frame(text, num, tOf): arguments imply differing number of rows: 4, 6, 5
# install.packages("datasets")
library(datasets)
str(datasets::beaver1)
## 'data.frame': 114 obs. of 4 variables:
## $ day : num 346 346 346 346 346 346 346 346 346 346 ...
## $ time : num 840 850 900 910 920 930 940 950 1000 1010 ...
## $ temp : num 36.3 36.3 36.4 36.4 36.5 ...
## $ activ: num 0 0 0 0 0 0 0 0 0 0 ...
data2play = datasets::beaver1
data2play[1]
## day
## 1 346
## 2 346
## 3 346
## 4 346
## 5 346
## 6 346
## 7 346
## 8 346
## 9 346
## 10 346
## 11 346
## 12 346
## 13 346
## 14 346
## 15 346
## 16 346
## 17 346
## 18 346
## 19 346
## 20 346
## 21 346
## 22 346
## 23 346
## 24 346
## 25 346
## 26 346
## 27 346
## 28 346
## 29 346
## 30 346
## 31 346
## 32 346
## 33 346
## 34 346
## 35 346
## 36 346
## 37 346
## 38 346
## 39 346
## 40 346
## 41 346
## 42 346
## 43 346
## 44 346
## 45 346
## 46 346
## 47 346
## 48 346
## 49 346
## 50 346
## 51 346
## 52 346
## 53 346
## 54 346
## 55 346
## 56 346
## 57 346
## 58 346
## 59 346
## 60 346
## 61 346
## 62 346
## 63 346
## 64 346
## 65 346
## 66 346
## 67 346
## 68 346
## 69 346
## 70 346
## 71 346
## 72 346
## 73 346
## 74 346
## 75 346
## 76 346
## 77 346
## 78 346
## 79 346
## 80 346
## 81 346
## 82 346
## 83 346
## 84 346
## 85 346
## 86 346
## 87 346
## 88 346
## 89 346
## 90 346
## 91 346
## 92 347
## 93 347
## 94 347
## 95 347
## 96 347
## 97 347
## 98 347
## 99 347
## 100 347
## 101 347
## 102 347
## 103 347
## 104 347
## 105 347
## 106 347
## 107 347
## 108 347
## 109 347
## 110 347
## 111 347
## 112 347
## 113 347
## 114 347
data2play[,1]
## [1] 346 346 346 346 346 346 346 346 346 346 346 346 346 346 346 346 346
## [18] 346 346 346 346 346 346 346 346 346 346 346 346 346 346 346 346 346
## [35] 346 346 346 346 346 346 346 346 346 346 346 346 346 346 346 346 346
## [52] 346 346 346 346 346 346 346 346 346 346 346 346 346 346 346 346 346
## [69] 346 346 346 346 346 346 346 346 346 346 346 346 346 346 346 346 346
## [86] 346 346 346 346 346 346 347 347 347 347 347 347 347 347 347 347 347
## [103] 347 347 347 347 347 347 347 347 347 347 347 347
data2play[1,]
## day time temp activ
## 1 346 840 36.33 0
data2play$day
## [1] 346 346 346 346 346 346 346 346 346 346 346 346 346 346 346 346 346
## [18] 346 346 346 346 346 346 346 346 346 346 346 346 346 346 346 346 346
## [35] 346 346 346 346 346 346 346 346 346 346 346 346 346 346 346 346 346
## [52] 346 346 346 346 346 346 346 346 346 346 346 346 346 346 346 346 346
## [69] 346 346 346 346 346 346 346 346 346 346 346 346 346 346 346 346 346
## [86] 346 346 346 346 346 346 347 347 347 347 347 347 347 347 347 347 347
## [103] 347 347 347 347 347 347 347 347 347 347 347 347
data2play["day"]
## day
## 1 346
## 2 346
## 3 346
## 4 346
## 5 346
## 6 346
## 7 346
## 8 346
## 9 346
## 10 346
## 11 346
## 12 346
## 13 346
## 14 346
## 15 346
## 16 346
## 17 346
## 18 346
## 19 346
## 20 346
## 21 346
## 22 346
## 23 346
## 24 346
## 25 346
## 26 346
## 27 346
## 28 346
## 29 346
## 30 346
## 31 346
## 32 346
## 33 346
## 34 346
## 35 346
## 36 346
## 37 346
## 38 346
## 39 346
## 40 346
## 41 346
## 42 346
## 43 346
## 44 346
## 45 346
## 46 346
## 47 346
## 48 346
## 49 346
## 50 346
## 51 346
## 52 346
## 53 346
## 54 346
## 55 346
## 56 346
## 57 346
## 58 346
## 59 346
## 60 346
## 61 346
## 62 346
## 63 346
## 64 346
## 65 346
## 66 346
## 67 346
## 68 346
## 69 346
## 70 346
## 71 346
## 72 346
## 73 346
## 74 346
## 75 346
## 76 346
## 77 346
## 78 346
## 79 346
## 80 346
## 81 346
## 82 346
## 83 346
## 84 346
## 85 346
## 86 346
## 87 346
## 88 346
## 89 346
## 90 346
## 91 346
## 92 347
## 93 347
## 94 347
## 95 347
## 96 347
## 97 347
## 98 347
## 99 347
## 100 347
## 101 347
## 102 347
## 103 347
## 104 347
## 105 347
## 106 347
## 107 347
## 108 347
## 109 347
## 110 347
## 111 347
## 112 347
## 113 347
## 114 347
# subir csv file to R.
dataset = read.csv(file = "data/dataset.csv", header = T)
# examinar dataset
head(dataset)
tail(dataset)
str(dataset)
# Objeto
num
## Michelle Diana Gabriel Horacio Pablo Sara
## 2 4 5 6 7 5
# Funciones
# functionNombre = function(argumentos) {
# codigo operacion ,
# resultado }
sueldoMes = function(lista, sueldo){
saldoFinal = lista + sueldo
return(saldoFinal)
}
sueldoMes(num, 0.14)
## Michelle Diana Gabriel Horacio Pablo Sara
## 2.14 4.14 5.14 6.14 7.14 5.14
mes1 = c(0.15,0.13,0.16,0.14,0.3,0.23)
sueldoMes(num, mes1)
## Michelle Diana Gabriel Horacio Pablo Sara
## 2.15 4.13 5.16 6.14 7.30 5.23
mes2 = c()
for ( i in 1:length(num)){
mes2[i] = num[i] + 0.43
names(mes2)[i] = names(num)[i]
}
mes2
## Michelle Diana Gabriel Horacio Pablo Sara
## 2.43 4.43 5.43 6.43 7.43 5.43
# sapply
sapply(num, function(x) x + 0.13)
## Michelle Diana Gabriel Horacio Pablo Sara
## 2.13 4.13 5.13 6.13 7.13 5.13
# lapply
lapply(num, function(x) x + 0.13)
## $Michelle
## [1] 2.13
##
## $Diana
## [1] 4.13
##
## $Gabriel
## [1] 5.13
##
## $Horacio
## [1] 6.13
##
## $Pablo
## [1] 7.13
##
## $Sara
## [1] 5.13
summary(data2play)
## day time temp activ
## Min. :346.0 Min. : 0.0 Min. :36.33 Min. :0.00000
## 1st Qu.:346.0 1st Qu.: 932.5 1st Qu.:36.76 1st Qu.:0.00000
## Median :346.0 Median :1415.0 Median :36.87 Median :0.00000
## Mean :346.2 Mean :1312.0 Mean :36.86 Mean :0.05263
## 3rd Qu.:346.0 3rd Qu.:1887.5 3rd Qu.:36.96 3rd Qu.:0.00000
## Max. :347.0 Max. :2350.0 Max. :37.53 Max. :1.00000
dim(data2play)
## [1] 114 4
aggregate(time~day, mean, data =data2play)
## day time
## 1 346 1601.3187
## 2 347 167.3913
aggregate(temp~day, max, data =data2play)
## day temp
## 1 346 37.53
## 2 347 37.15
aggregate(temp~day, min, data =data2play)
## day temp
## 1 346 36.33
## 2 347 36.70
meltData =reshape::melt(data2play)
## Using as id variables
meltData
## variable value
## 1 day 346.00
## 2 day 346.00
## 3 day 346.00
## 4 day 346.00
## 5 day 346.00
## 6 day 346.00
## 7 day 346.00
## 8 day 346.00
## 9 day 346.00
## 10 day 346.00
## 11 day 346.00
## 12 day 346.00
## 13 day 346.00
## 14 day 346.00
## 15 day 346.00
## 16 day 346.00
## 17 day 346.00
## 18 day 346.00
## 19 day 346.00
## 20 day 346.00
## 21 day 346.00
## 22 day 346.00
## 23 day 346.00
## 24 day 346.00
## 25 day 346.00
## 26 day 346.00
## 27 day 346.00
## 28 day 346.00
## 29 day 346.00
## 30 day 346.00
## 31 day 346.00
## 32 day 346.00
## 33 day 346.00
## 34 day 346.00
## 35 day 346.00
## 36 day 346.00
## 37 day 346.00
## 38 day 346.00
## 39 day 346.00
## 40 day 346.00
## 41 day 346.00
## 42 day 346.00
## 43 day 346.00
## 44 day 346.00
## 45 day 346.00
## 46 day 346.00
## 47 day 346.00
## 48 day 346.00
## 49 day 346.00
## 50 day 346.00
## 51 day 346.00
## 52 day 346.00
## 53 day 346.00
## 54 day 346.00
## 55 day 346.00
## 56 day 346.00
## 57 day 346.00
## 58 day 346.00
## 59 day 346.00
## 60 day 346.00
## 61 day 346.00
## 62 day 346.00
## 63 day 346.00
## 64 day 346.00
## 65 day 346.00
## 66 day 346.00
## 67 day 346.00
## 68 day 346.00
## 69 day 346.00
## 70 day 346.00
## 71 day 346.00
## 72 day 346.00
## 73 day 346.00
## 74 day 346.00
## 75 day 346.00
## 76 day 346.00
## 77 day 346.00
## 78 day 346.00
## 79 day 346.00
## 80 day 346.00
## 81 day 346.00
## 82 day 346.00
## 83 day 346.00
## 84 day 346.00
## 85 day 346.00
## 86 day 346.00
## 87 day 346.00
## 88 day 346.00
## 89 day 346.00
## 90 day 346.00
## 91 day 346.00
## 92 day 347.00
## 93 day 347.00
## 94 day 347.00
## 95 day 347.00
## 96 day 347.00
## 97 day 347.00
## 98 day 347.00
## 99 day 347.00
## 100 day 347.00
## 101 day 347.00
## 102 day 347.00
## 103 day 347.00
## 104 day 347.00
## 105 day 347.00
## 106 day 347.00
## 107 day 347.00
## 108 day 347.00
## 109 day 347.00
## 110 day 347.00
## 111 day 347.00
## 112 day 347.00
## 113 day 347.00
## 114 day 347.00
## 115 time 840.00
## 116 time 850.00
## 117 time 900.00
## 118 time 910.00
## 119 time 920.00
## 120 time 930.00
## 121 time 940.00
## 122 time 950.00
## 123 time 1000.00
## 124 time 1010.00
## 125 time 1020.00
## 126 time 1030.00
## 127 time 1040.00
## 128 time 1050.00
## 129 time 1100.00
## 130 time 1110.00
## 131 time 1120.00
## 132 time 1130.00
## 133 time 1140.00
## 134 time 1150.00
## 135 time 1200.00
## 136 time 1210.00
## 137 time 1220.00
## 138 time 1230.00
## 139 time 1240.00
## 140 time 1250.00
## 141 time 1300.00
## 142 time 1310.00
## 143 time 1320.00
## 144 time 1330.00
## 145 time 1340.00
## 146 time 1350.00
## 147 time 1400.00
## 148 time 1410.00
## 149 time 1420.00
## 150 time 1430.00
## 151 time 1440.00
## 152 time 1450.00
## 153 time 1500.00
## 154 time 1510.00
## 155 time 1520.00
## 156 time 1530.00
## 157 time 1540.00
## 158 time 1550.00
## 159 time 1600.00
## 160 time 1610.00
## 161 time 1620.00
## 162 time 1630.00
## 163 time 1640.00
## 164 time 1650.00
## 165 time 1700.00
## 166 time 1710.00
## 167 time 1720.00
## 168 time 1730.00
## 169 time 1740.00
## 170 time 1750.00
## 171 time 1800.00
## 172 time 1810.00
## 173 time 1820.00
## 174 time 1830.00
## 175 time 1840.00
## 176 time 1850.00
## 177 time 1900.00
## 178 time 1910.00
## 179 time 1920.00
## 180 time 1930.00
## 181 time 1940.00
## 182 time 1950.00
## 183 time 2000.00
## 184 time 2010.00
## 185 time 2020.00
## 186 time 2030.00
## 187 time 2040.00
## 188 time 2050.00
## 189 time 2100.00
## 190 time 2110.00
## 191 time 2120.00
## 192 time 2130.00
## 193 time 2140.00
## 194 time 2150.00
## 195 time 2200.00
## 196 time 2210.00
## 197 time 2230.00
## 198 time 2240.00
## 199 time 2250.00
## 200 time 2300.00
## 201 time 2310.00
## 202 time 2320.00
## 203 time 2330.00
## 204 time 2340.00
## 205 time 2350.00
## 206 time 0.00
## 207 time 10.00
## 208 time 20.00
## 209 time 30.00
## 210 time 40.00
## 211 time 50.00
## 212 time 100.00
## 213 time 110.00
## 214 time 120.00
## 215 time 130.00
## 216 time 140.00
## 217 time 150.00
## 218 time 200.00
## 219 time 210.00
## 220 time 220.00
## 221 time 230.00
## 222 time 240.00
## 223 time 250.00
## 224 time 300.00
## 225 time 310.00
## 226 time 320.00
## 227 time 330.00
## 228 time 340.00
## 229 temp 36.33
## 230 temp 36.34
## 231 temp 36.35
## 232 temp 36.42
## 233 temp 36.55
## 234 temp 36.69
## 235 temp 36.71
## 236 temp 36.75
## 237 temp 36.81
## 238 temp 36.88
## 239 temp 36.89
## 240 temp 36.91
## 241 temp 36.85
## 242 temp 36.89
## 243 temp 36.89
## 244 temp 36.67
## 245 temp 36.50
## 246 temp 36.74
## 247 temp 36.77
## 248 temp 36.76
## 249 temp 36.78
## 250 temp 36.82
## 251 temp 36.89
## 252 temp 36.99
## 253 temp 36.92
## 254 temp 36.99
## 255 temp 36.89
## 256 temp 36.94
## 257 temp 36.92
## 258 temp 36.97
## 259 temp 36.91
## 260 temp 36.79
## 261 temp 36.77
## 262 temp 36.69
## 263 temp 36.62
## 264 temp 36.54
## 265 temp 36.55
## 266 temp 36.67
## 267 temp 36.69
## 268 temp 36.62
## 269 temp 36.64
## 270 temp 36.59
## 271 temp 36.65
## 272 temp 36.75
## 273 temp 36.80
## 274 temp 36.81
## 275 temp 36.87
## 276 temp 36.87
## 277 temp 36.89
## 278 temp 36.94
## 279 temp 36.98
## 280 temp 36.95
## 281 temp 37.00
## 282 temp 37.07
## 283 temp 37.05
## 284 temp 37.00
## 285 temp 36.95
## 286 temp 37.00
## 287 temp 36.94
## 288 temp 36.88
## 289 temp 36.93
## 290 temp 36.98
## 291 temp 36.97
## 292 temp 36.85
## 293 temp 36.92
## 294 temp 36.99
## 295 temp 37.01
## 296 temp 37.10
## 297 temp 37.09
## 298 temp 37.02
## 299 temp 36.96
## 300 temp 36.84
## 301 temp 36.87
## 302 temp 36.85
## 303 temp 36.85
## 304 temp 36.87
## 305 temp 36.89
## 306 temp 36.86
## 307 temp 36.91
## 308 temp 37.53
## 309 temp 37.23
## 310 temp 37.20
## 311 temp 37.25
## 312 temp 37.20
## 313 temp 37.21
## 314 temp 37.24
## 315 temp 37.10
## 316 temp 37.20
## 317 temp 37.18
## 318 temp 36.93
## 319 temp 36.83
## 320 temp 36.93
## 321 temp 36.83
## 322 temp 36.80
## 323 temp 36.75
## 324 temp 36.71
## 325 temp 36.73
## 326 temp 36.75
## 327 temp 36.72
## 328 temp 36.76
## 329 temp 36.70
## 330 temp 36.82
## 331 temp 36.88
## 332 temp 36.94
## 333 temp 36.79
## 334 temp 36.78
## 335 temp 36.80
## 336 temp 36.82
## 337 temp 36.84
## 338 temp 36.86
## 339 temp 36.88
## 340 temp 36.93
## 341 temp 36.97
## 342 temp 37.15
## 343 activ 0.00
## 344 activ 0.00
## 345 activ 0.00
## 346 activ 0.00
## 347 activ 0.00
## 348 activ 0.00
## 349 activ 0.00
## 350 activ 0.00
## 351 activ 0.00
## 352 activ 0.00
## 353 activ 0.00
## 354 activ 0.00
## 355 activ 0.00
## 356 activ 0.00
## 357 activ 0.00
## 358 activ 0.00
## 359 activ 0.00
## 360 activ 0.00
## 361 activ 0.00
## 362 activ 0.00
## 363 activ 0.00
## 364 activ 0.00
## 365 activ 0.00
## 366 activ 0.00
## 367 activ 0.00
## 368 activ 0.00
## 369 activ 0.00
## 370 activ 0.00
## 371 activ 0.00
## 372 activ 0.00
## 373 activ 0.00
## 374 activ 0.00
## 375 activ 0.00
## 376 activ 0.00
## 377 activ 0.00
## 378 activ 0.00
## 379 activ 0.00
## 380 activ 0.00
## 381 activ 0.00
## 382 activ 0.00
## 383 activ 0.00
## 384 activ 0.00
## 385 activ 0.00
## 386 activ 0.00
## 387 activ 0.00
## 388 activ 0.00
## 389 activ 0.00
## 390 activ 0.00
## 391 activ 0.00
## 392 activ 0.00
## 393 activ 0.00
## 394 activ 0.00
## 395 activ 0.00
## 396 activ 1.00
## 397 activ 0.00
## 398 activ 0.00
## 399 activ 0.00
## 400 activ 0.00
## 401 activ 0.00
## 402 activ 0.00
## 403 activ 0.00
## 404 activ 0.00
## 405 activ 0.00
## 406 activ 0.00
## 407 activ 0.00
## 408 activ 0.00
## 409 activ 0.00
## 410 activ 1.00
## 411 activ 0.00
## 412 activ 0.00
## 413 activ 0.00
## 414 activ 0.00
## 415 activ 0.00
## 416 activ 0.00
## 417 activ 0.00
## 418 activ 0.00
## 419 activ 0.00
## 420 activ 0.00
## 421 activ 0.00
## 422 activ 1.00
## 423 activ 0.00
## 424 activ 0.00
## 425 activ 1.00
## 426 activ 0.00
## 427 activ 0.00
## 428 activ 1.00
## 429 activ 0.00
## 430 activ 0.00
## 431 activ 0.00
## 432 activ 0.00
## 433 activ 0.00
## 434 activ 0.00
## 435 activ 0.00
## 436 activ 0.00
## 437 activ 0.00
## 438 activ 0.00
## 439 activ 0.00
## 440 activ 0.00
## 441 activ 0.00
## 442 activ 0.00
## 443 activ 0.00
## 444 activ 0.00
## 445 activ 0.00
## 446 activ 0.00
## 447 activ 0.00
## 448 activ 0.00
## 449 activ 0.00
## 450 activ 0.00
## 451 activ 0.00
## 452 activ 0.00
## 453 activ 0.00
## 454 activ 0.00
## 455 activ 0.00
## 456 activ 1.00
# factores
unique(meltData$variable)
## [1] day time temp activ
## Levels: day time temp activ
par(mfrow = c(1,2))
plot(activ~temp, data = data2play)
plot(data2play$activ~data2play$time)
hist(data2play$temp, breaks = 10)
data2play2 = datasets::beaver2
boxplot(data2play2$temp, data2play$temp,
xlab = "Castores", ylab = "T (ºc)",
main = "Diferencia de temperatura entre especies de castor")
legend("bottomleft", " T = ªC")
plot(data2play$temp~data2play$time,
xlab = "Hora del dÃa",
ylab = "Temperatura",
ylim = c(35,39))
points(data2play2$temp~data2play2$time,
pch = 16,
col = "red")
abline(h = mean(data2play$temp))
abline(h = mean(data2play2$temp), col = "red")
legend("bottomleft", c("Species1", "Species2"),
pch = c(1,16), col = c("black", "red"), bty = "n")
par(las = 1)
col = c("#8da54f", "#bb5542")
plot(data2play$temp~data2play$time,
xlab = "Hora del dÃa",
ylab = "Temperatura",
ylim = c(35,39),
col = col[1],
pch = 16)
points(data2play2$temp~data2play2$time,
pch = 16,
col = col[2])
abline(h = mean(data2play$temp))
abline(h = mean(data2play2$temp), col = "red")
legend("bottomleft", c("Species1", "Species2"),
pch = c(16,16), col = col , bty = "n")
legend("bottomright", c("x_Species1", "x_Species2"),lty = 1,
col = col , bty = "n")
layout(matrix(c(1,2,3,3),2, 2, byrow = T))
par(mar = c(4,4,2,2), las = 1)
boxplot(data2play$temp, data2play2$temp,
xlab = "Castores ",
ylab = "temperatura",
col = col )
hist(data2play2$day, xlim = c(300,360),
xlab = "dia")
hist(data2play$day, add = T)
plot(data2play$temp~data2play$time,
xlab = "Hora del dÃa",
ylab = "Temperatura",
ylim = c(35,39),
col = col[1],
pch = 16)
points(data2play2$temp~data2play2$time,
pch = 16,
col = col[2])
abline(h = mean(data2play$temp))
abline(h = mean(data2play2$temp), col = "red")
legend("bottomleft", c("Species1", "Species2"),
pch = c(16,16), col = col , bty = "n")
legend("bottomright", c("x_Species1", "x_Species2"),lty = 1, col = col , bty = "n")
# Add boxplots to a scatterplot
par(fig=c(0,0.8,0,0.8))
plot(data2play$temp~data2play$time,
xlab = "Hora del dÃa",
ylab = "Temperatura",
ylim = c(35,39),
col = col[1],
pch = 16)
points(data2play2$temp~data2play2$time,
pch = 16,
col = col[2])
abline(h = mean(data2play$temp))
abline(h = mean(data2play2$temp), col = "red")
legend("bottomleft", c("Species1", "Species2"),
pch = c(16,16), col = col , bty = "n")
par(fig=c(0,0.8,0.55,1), new=TRUE)
boxplot(data2play$time, data2play2$time,
col = col ,
yaxt = "n",
axes = F, horizontal = T)
par(fig=c(0.65,1,0,0.8),new=TRUE)
boxplot(data2play$temp, data2play2$temp,
col = col ,
yaxt = "n",
axes = F)
res = 200
width = 1500
height = 1200
units = "px"
png(filename = "figs/figura1.png", res = res, width = width, height = height, units = units)
layout(matrix(c(1,2,3,3),2, 2, byrow = T))
par(mar = c(4,4,2,2), las = 1)
boxplot(data2play$temp, data2play2$temp,
xlab = "Castores ",
ylab = "temperatura",
col = col )
hist(data2play2$day, xlim = c(300,360),
xlab = "dia")
hist(data2play$day, add = T)
plot(data2play$temp~data2play$time,
xlab = "Hora del dÃa",
ylab = "Temperatura",
ylim = c(35,39),
col = col[1],
pch = 16)
points(data2play2$temp~data2play2$time,
pch = 16,
col = col[2])
abline(h = mean(data2play$temp))
abline(h = mean(data2play2$temp), col = "red")
legend("bottomleft", c("Species1", "Species2"),
pch = c(16,16), col = col , bty = "n")
legend("bottomright", c("x_Species1", "x_Species2"),lty = 1, col = col , bty = "n")
dev.off()
## quartz_off_screen
## 2
pdf(file = "figs/figure1.pdf",paper = )
# Add boxplots to a scatterplot
par(fig=c(0,0.8,0,0.8))
plot(data2play$temp~data2play$time,
xlab = "Hora del dÃa",
ylab = "Temperatura",
ylim = c(35,39),
col = col[1],
pch = 16)
points(data2play2$temp~data2play2$time,
pch = 16,
col = col[2])
abline(h = mean(data2play$temp))
abline(h = mean(data2play2$temp), col = "red")
legend("bottomleft", c("Species1", "Species2"),
pch = c(16,16), col = col , bty = "n")
par(fig=c(0,0.8,0.55,1), new=TRUE)
boxplot(data2play$time, data2play2$time,
col = col ,
yaxt = "n",
axes = F, horizontal = T)
par(fig=c(0.65,1,0,0.8),new=TRUE)
boxplot(data2play$temp, data2play2$temp,
col = col ,
yaxt = "n",
axes = F)